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Solutions of the Poincark equation describing equatorially trapped three-dimensional 
boundary travelling waves in rotating spherical systems are discussed. It is shown 
that the combined effects of Coriolis forces and spherical curvature enable the 
equatorial region to form an equatorial waveguide tube with characteristic 
latitudinal radius (2/m)i and radial radius ( l / m ) ,  where m is azimuthal wavenumber. 
Inertial waves with sufficiently simple structure along the axis of rotation and 
sufficiently small azimuthal wavelength must be trapped in the equatorial waveguide 
tube. The structure and frequency of the inertial waves are thus hardly affected by 
the presence of an inner sphere or by the condition of higher latitudes. Further 
calculations on rotating spherical fluid shells of finite internal viscosity and stress- 
free boundaries are also discussed. 

1. Introduction 
The equatorial zone is a particularly intriguing and interesting region in the study 

of wave motions in rotating spherical systems. It is a region where the Coriolis 
parameter decreases rapidly and the widely used quasi-geostrophic approximation 
breaks down. The influence of Coriolis forces on fluid motions in rotating systems, 
however, is usually closely associated with the curvature of a fluid container (Busse 
1982). In this connection, the influence of the Coriolis forces is strongest in the 
equatorial region because the spherical curvature with respect to the axis of rotation 
is largest there. This paper is concerned with the azimuthally travelling inertial wave 
that is trapped in an equatorial waveguide tube with characteristic latitudinal radius 
L, = (2/m)+ and radial radius L, = ( i /m),  a consequence of the combined effects of 
the Coriolis forces and equatorial curvature, where m is the azimuthal wavenumber 
of the inertial wave. 

The basic equation governing wave motions in rotating fluid systems was derived 
by Poincar6 in 1892 (see Greenspan 1969). Consider a homogeneous fluid sphere of 
viscosity v that is rotating uniformly with a constant angular velocity a. Using the 
radius of the sphere, ro, as a characteristic length, and 0-1 as a characterivtic scale 
of time, the dimensionless equation of motion and the law of conservation of mass are 

au 
at 
-+2k x u = -VP, 

v * u  = 0, (2)  
where k is a unit vector parallel to the axis of rotation, and u represents the velocity 
field, (us, u+, us) in cylindrical coordinates (s, $, z )  and (ur, ug, u+) the velocity in 
spherical coordinates ( r ,  8, g5) ; P is a reduced pressure field. The Ekman number E 
and the Rossby number Ro, defined as 

E = v/Qr;, Ro = U/SZr,, 



204 K .  Zhang 

where U is the typical amplitude of the velocity, are set to zero. By eliminating u 
from ( 1 )  and (2), we obtain an equation governing inertial oscillations of an inviscid 
fluid, 

a 2  a 2  

azt a22 
-VP+4-P = 0. (3) 

This equation is usually referred to as the Poinear4 equation. The corresponding 
boundary condition a t  the spherical bounding surfaces is 

The Poincark equation, the simplest equation for three-dimensional wave motions in 
rotating fluids, is of primary importance in the understanding of many wave 
phenomena in geophysics and planetary physics. The equation is also of considerable 
interest from a mathematical standpoint as (3) and (4) have unusual mathematical 
properties (see $2). 

The conventional /3-plane solutions describing equatorially trapped gravity waves 
in a density-stratified fluid were found on the basis of the following assumptions 
(Matsuno 1866; Blandford 1966; see also the comprehensive monograph by Gill 
1982) : (a) shallow-water approximation, ( b )  neglecting radial acceleration in the 
equation of motion (the hydrostatic approximation), and ( c )  equatorial P-plane 
approximation. For comparison with the results of the present paper, we briefly 
describe the equatorially trapped gravity waves, which are related to the following 
partial differential equation (see Gill 1982 for details) : 

where v = - uo, distance northward from the equator is denoted by y = r($t - 0)  and 
the eastward distance is x = $r ,  c = (gH)f is the speed of gravity wave with a constant 
depth H ,  and f and P are associated with the equatorial P-plane approximation 

f = 252 sin (in- 0)  = (2Q/r) [~($n-6)] = by. 

If we look for wave solutions proportional to expi(mx-wt), the above partial 
differential equation reduces to an ordinary differential equation 

which has analytical solutions that vanish a t  infinitely large f y, 

v = 2-n/2~,[y(/3/c)t~ exp ( -/3y2/2c) cos (mz-wwt), 

H ,  being a Hermite polynomial of order n. It is evident that the wave is an 
equatorially trapped wave, with amplitude decreasing exponentially from the 
equator y = 0 and latitudinal radius dependent of the speed of the gravity wave c but 
independent of the azimuthal wavenumber m. 

Most of the research conducted before 1970s on the three-dimensional problem in 
a rotating fluid sphere or spherical shell is summarized in Greenspan (1969). While 
the laboratory experiments of Aldridge & Toomre (1969) demonstrated the existence 
of axisymmetric spherical inertial oscillations, Stewartson & Rickard (1970) raised 
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series questions about the existence of continuous solutions of global scale (m = 1) in 
a thin-shell limit, where internal discontinuous layers on the characteristic surfaces 
of (3) become possible. Those internal discontinuous layers were observed 
experimentally in cylindrical geometry (see Greenspan 1969). The mathematical 
uncertainties lead Aldridge (1972) to the use of a variational principle for solutions 
of the axisymmetric oscillations in a thick spherical shell. Very little attention has 
been paid to the inertial waves that depart strongly from an axisymmetric symmetry 
(that is, m 9 1) .  It is found, however, that strongly non-axisymmetric (m 9 1) inertial 
waves with a simple-x structure can be most easily excited and sustained in an 
unstably stratified, nearly inviscid (small Prandtl number) fluid (Zhang & Busse 
1987; Zhang 1992b). The exact three-dimensional solutions in the form of 
equatorially trapped boundary waves discussed in the present paper thus provide 
an essential framework not only for understanding but also attacking analytically 
the problem of spherical rotating (small Prandtl number) convection. Furthermore, 
although the general implicit forms of solutions for the Poinear6 equation (either in 
modified oblate spheroidal coordinates or in cylindrical coordinates in which some 
roots of the associated Legendre function are involved in the summation of 
polynomials) have been available for a long time, it should be pointed out that very 
little can be learnt from the solutions of the general implicit forms and that 
systematic studies on the structure of the inertial waves have not been conducted. 

The principal purpose of this paper is to examine subclasses of solutions of (3) and 
(4) in the form of equatorially trapped boundary waves. They are discovered under 
the following conditions: the scale of the wave motions is sufficiently small and the 
motion structure along the axis of rotation is sufficiently simple. A direct consequence 
is that the existence of sn inner sphere and the condition of higher latitudes hardly 
affect the wave motions of this kind. We discuss some general properties of the 
Poinear6 equation including classification of solutions according to their equatorial 
and rotational symmetries in $ 2. Solutions and properties of equatorially symmetric 
inertial waves are then examined in $3. This is followed by a discussion of 
equatorially antisymmetric inertial waves in $4. A supplementary numerical analysis 
for spherical shells with finite internal viscosity is presented in section $5.  

2. Some properties of the Poincark equation 

allows us to seek azimuthally travelling wave solutions : 
Independence of the coefficients of (3) of the azimuthal variable $ and the time t 

p = p(z, 8) ei(m$+"t), 

where o is the frequency of a wave. Equations (3) and (4) then become 

4 ap 
as az 

z- = 0. 
aP 2m 

s - + --P + (1 - -J 
It is of importance to note that the partial differential equation ( 5 )  is hyperbolic for 
w < 2 but boundary condition (6) is of the generalized Dirichlet kind : the problem of 
inertial waves is improperly posed in the Hadamard sense (Stewartson & Rickard 
1970). Thus it is uncertain, particularly when an inner sphere is present, whether 
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continuous and physically acceptable solutions that satisfy the boundary condition 
(6) exist. Under the assumption that the solutions are well-behaved, however, many 
properties of the Poincar6 equation are found and discussed by Greenspan (1964, 
1969) (see also Lyttleton 1953). Separable solutions are possible in modified oblate 
spheroidal coordinates, 

The solutions can then be written 

where P r  is an associated Legendre function. Substituting solution (9) into (6) yields 
an equation for the eigenfrequency w :  

where w = 2ak, and k = 1 , 2 , 3 , ,  . . , K ,  providing the third degree of freedom of the 
eigenfrequency, and the value of K is determined by the combination of 1 and m. It 
is also shown by Greenspan (1969) that w is real and bounded by -2 6 w < 2. 

Faced with this complex three-dimensional eigenvalue problem, further classi- 
fications are necessary for gaining systematic understanding of the problem. One 
useful way is to divide solutions of the Poinear6 equation into four subclasses 
according to their rotational and equatorial reflectional symmetry : 

where O0 is an arbitrary number. These symmetry properties can also be expressed 
in terms of a combination of 1 and m in (9) : m = 0 and 1 = even correspond to 
symmetry (a ) ;  rn = 0 and E = odd are for symmetry ( b ) ;  1 -rn = even and m 2 1 
represent symmetry (c);  and 1-m = odd and m > 1 give rise to symmetry (d) .  
Moreover, the combination of the indices (1, m, k) is also roughly indicative of the 
three-dimensional structure of the wave motions. While the wavenumber m indicates 
the azimuthal scale of the motions, the size of 1 - m usually represents the degree of 
complexity in the z-direction. The larger value of Z-m usually corresponds to the 
more complicated z-structure. For a particular combination of 1-m, it is the value 
of at (the third dimension k) that determines the radial structure. 

Under certain physical conditions, only a small number of inertial modes can be 
excited. It is neither feasible nor necessary to investigate the whole spectrum of the 
problem ; some physical mechanism should be adopted to discriminate among 
different subclasses of solutions. For rapidly rotating fluid systems, a very useful 
mechanism seems associated with the Taylor-Proudman theorem, 

aulaz = 0, 
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which is a special case of (1) .  Fluid motions in many rotating fluid systems attempt 
to satisfy the Taylor-Proudman constraint : minimizing variations of the motions in 
the direction of the axis of rotation. An example of this are columnar convection rolls 
in rapidly rotating convective systems (Busse 1970 ; Busse & Or 1986 ; Zhang 1992a). 
As will be shown in a subsequent paper, it is only subclass (c) with the simplest 
z-structure (Z-m = 2) that can be excited and maintained by thermal convection. 
From the point of view of geophysical applications, the key subclasses of interest are 
likely to be related to the wave motions that have simple z-structure, i.e. the smallest 
values of l -m. We therefore concentrate attention on three subclasses of solutions 
of (5 )  and (6) that have the smallest values of Z-m, forming three planes in three- 
dimensional eigenvalue space (l-m, m, k), namely 

symmetry ( d )  : Z - W L = ~ ,  m = l , 2  ,... 00; k = 1 , 2  ... K ;  

symmetry (c) : l - m = 2 ,  m = 1 , 2  ,... co; k = 1 , 2  ... K ;  

symmetry ( d )  : l - m = 3 ,  m = 1 , 2  ,... C O ;  k = 1 , 2  ... K .  

Other subclasses with a more complicated z-structure (1 - m 2 4) are likely to be less 
important in most geophysical applications and will not be considered in this paper. 

3. Equatorially symmetric waves 
Equatorially symmetric wave motions (symmetry c) with the simplest z-structure 

are described by 1 = m+2. Equation (10) then gives rise to a quadratic equation 
which can be solved readily. Only two equatorially symmetric waves exist for this 
subclass : one propagates westward (w') and other propagates eastward (w- )  : 

The corresponding solutions of (1) and (2) may be represented by 

where 
(21- 1)  (2Z+Zw-2w) (21-1) (21+10-4) 

8(1--1) A,  = 7 A , =  8(1--1) , 

(21-1)(1-2)w2 , c=- (1-2) B =  
4 ( ~ - 2 )  (2-w)' 

and they are normalized in such a way that 

u c( s =  l , ~ = o , z = o , z = c o ) = - 1 . o .  
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FIGURE 1. Contours of uB at the equatorial plane (on the left-hand side), and in a meridional 
plane (on the right-hand side) for the w- waves: (a) m = 2, ( b )  m = 7 ,  and ( c )  m = 20. 

(4 (b) (4 

m = 2  m = l  rn = 20 

FIGURE 2. As in figure 1 but for the w+ waves. 

The major reason why the solution is expressed in terms of velocity components is 
that the reduced pressure P is a much less convenient variable when higher-order 
terms like finite viscosity are involved (see $ 5 ) .  

This seemingly simple solution demonstrates one of the most extraordinary yet 
subtle forms of wave motion in rotating systems. Taking advantage of the properties 
of an azimuthally travelling wave, the profile of the wave structure can be illustrated 
in a frame of reference moving with the phase speed of a wave c = -o/m. Typical 
structure for the w- wave is shown in figure 1 for three different wavenumbers, and 
displayed in figure 2 is for the corresponding w+ wave. More detailed features of the 
solution can be seen in figure 3, where the velocity is shown as a function of 0 and 
s for several typical wavenumbers. The most remarkable feature of the wave motions 
is their position: both the waves are trapped in an equatorial boundary region. In 
recent studies of spherical convection (Zhang 1992a), the crucial importance of 
spherical geometry on the pattern of convection is particularly emphasized. It 
appears that spherical geometry is essential to the form of inertial oscillations. In a 
rapidly rotating spherical system, the equatorial region characterized by strong 
curvature with respect to the axis of rotation forms an equatorial waveguide tube in 
which most of the wave energy is trapped. The concentration of the wave on the 
equatorial region is so high that the existence of an inner sphere and the whole area 
of middle and high latitudes are ignored when the scale of the wave motions are 
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FIGURE 3. Normalized azimuthal velocity uB a t  the outer spherical surface as a function of 8 :  (a)  
w- waves and ( h )  w+ waves, where the azimuthal wavenumbers are (following the arrow) m = 2, 4, 
7 ,  20, 30. (c) Radial dependences of u,,, (dashed lines) and u, (solid lines) for m = 2, 7,  20 a t  the 
equatorial plane. 

sufficiently small. By contrast, the equatorial waveguide tube cannot be provided by 
cylindrical geometry, and this may help to explain the existence of experimentally 
observed internal discontinuous layers on the Characteristic surfaces (Greenspan 
1969). 

The properties of the equatorial waveguide tube are not obvious from the exact 
solutions but can be demonstrated more clearly in the large-wavenumber limit. Only 
the profile of the azimuthal component of the velocity, u I ( r ,  O), is considered in detail, 
and other components can readily be studied in a similar way. We first examine the 
radial dependence for any fixed values of Oo.  We introduce a small parameter, 6 = 

l / m ,  proportional to the wavelength of a wave, and a stretched boundary-layer 
coordinate, 

x = cl(l - r ) .  

We also expand the frequency of the waves in terms of l / l :  

w = w,+o,+O($) = +(2/1) :+(2/1)+0($) .  

Differentiating (14) with respect to r ,  we obtain 

?@ = ‘m [( 1 + 6 )  A ,  (1 + 6)Bd-3 22 + (1  - 6 )  Csl-31. 
ar r 

To a first approximation, for sufficiently large wavenumbers, 6 4 1,  the following 
equation can be derived : 

%=-u, 
ax 1 -6x’ 

u,(r) = uI( 1 )  e-m(l-r). 
and the leading order gives 

It follows that the amplitude of uI decreases exponentially from the outer spherical 
surface, and that the characteristic thickness of the radial boundary is O(l/m).  

The amplitude not only decreases exponentially from the outer boundary in the 
radial direction but also from the equator towards higher latitudes. A similar 
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procedure can be applied to examining the latitudinal dependence a t  the outer 
spherical surface. There exist three peaks of u, as a function of 8, namely 

8 -1 2B-A&-l)-C(Z-3) , - ,x, cosz e2,3 = 
(I- 1) 

While the u+ for the w- wave reaches its maximum a t  the equator (0, = in), the 
amplitude for the w+ wave displays two maxima (OZ ,O3)  at finite latitudes for 
moderate wavenumbers, as evidenced by figure 3(a ,  b) .  However, the two maxima 
shift from finite latitudes towards the equator with increasing m, and disappear at  
m = 20 (see also figure 3 b) : 

cos2 e2,3(z G 21) > 0; cos2e2,3(z z 22) < 0. 

Consequently, both waves reach a maximum a t  the equator if the wavenumber 
m 3 20. Differentiating (14) with respect to I9 results in 

au,/aO = cot O[mu++g(B)], 

y(0) = A, sinm+119-B(sinm-119+sinm+10)-C sin”-lO. 
where 

The leading order gives rise to 

u,(e) = r(A,+c) + ~ ( A , - z B - c ) ~  e-m(n/2-@e’z-cY(A @ - ~ B - c ) ,  

which yields 

It is evident that  the characteristic latitude to which the wave motions extend from 
the equator is L, = (2/m)i. 

The zone in the vicinity of the equator therefore forms an equatorial-waveguide 
tube of radial scale l /m and latitudinal scale (2 /m) i ;  we refer this type of three- 
dimensional wave as equatorially trapped boundary waves. It immediately becomes 
obvious that the geometrical factor of an inner core exerts a weak influence on wave 
motions of this type if the wavenumber of a wave satisfies 

u+(19) = (u+(+n) + 2w0) e-m(n/z-@*/2 - 2 wo + O(S) . (18) 

where 7 = ri/ro,  the radius ratio of a shell. The finding of equatorially trapped 
boundary waves provides a simple answer to the mathematical difficulties of the 
Poincark equation in a rotating spherical fluid shell : the effects of an inner sphere on 
this subclass may be safely ignored if condition (19) is well satisfied. 

4. Equatorially antisymmetric waves 
Equatorially antisymmetric waves (symmetry (d ) ,  Z-m < 4) similarly show 

equatorial trapping, and the corresponding equatorial waveguide tube is charac- 
terized by similar scales. The simplest subclass of equatorially antisymmetric 
waves is represented by I - m  = 1, and (10) then gives the eigenfrequency 

w = 211. 

The structure of the wave motions, in contrast to the case of 1 -m > 1 is independent 
of the frequency w .  I n  addition, the fluid motions are nearly two-dimensional, 
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au,/az = 0,  and a stream function, Y, in a plane parallel to the equatorial plane can 
therefore be introduced. The solutions of ( 5 )  and (6) for Z-m = 1 may be expressed 

sin (m$+wt),  ( 2 0 )  u 
by 

where 

sz-1 2 cos (mq5 + wt) ,  
1 y=- z- 1 

It is also interesting to  note that the wave motions in this case are purely toroidal 
and two-dimensional in spherical coordinates: u, = u,z+uss = 0. The peaks of the 
amplitude of the azimuthal component a t  the outer spherical surface are located a t  

8, = ~ T C  f sin-l(I/m)+, 

which approaches to the equator with increasing values of the azimuthal 
wavenumber. In  a similar way, we can derive the following equations: 

and the leading order leads to 

The radial and latitudinal dependences of u+ again can be expressed as 

u g ( r )  = u ( 1 )  e-rn(1-r); U+(O)  = u(e,) e-m(fi-Qe. ( 2 2 )  

The amplitude decreases exponentially both radially from the outer spherical surface 
and latitudinally from the equator with characteristic scales L, = ( l / m )  and L, = 

(l/m)i. This particular case was studied by Malkus (1968). 
Equatorially antisymmetric waves with more complex spatial structure are 

described by 1-m = 3, and the corresponding frequencies of the wave motions are 
related to the roots of the following cubic equation 

( 2 3 )  

where a is +. The general properties of the eigenfrequencies may be obtained without 
actually solving the cubic equation. First, the geostrophic mode (w = 0) cannot 
satisfy (5)  and (6) with Z-m = 3, since P(0)  = - 1 .  Secondly, there exist three real 
eigenvalues in the region - 2 < w < 2 ,  corresponding to three different waves ifm >, 1. 
This is because the criteria of the cubic equation (e.g. Abramowitz & Stegun 1972) 

F(a)  = -~(2Z-l)Za3+(2Z-l)a~+(1-2)a-l = 0, 

(z+1)2(1-2) 
z3(21-1 )3  , 

A = -  

is always negative, and 

S(1) =-$(Z-3)(Z-2) < O ;  F(-l) =iZ(Z+l) >0, 
hold for every non-zero wavenumber. It is also straightforward to show that there 
are two solutions for aF(a)/aa = 0:  - 1.0 < a1 < 0 and 0 < a2 < 1.0. Of the three 
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antisymmetric waves for any non-zero wavenumber, therefore, two must propagate 
westward (w > 0) and the other propagates eastward (w < 0). The precise values of 
the eigenfrequency can be expressed by the following formulae : 

where 

The corresponding solutions for (3) and (4) may be represented by 

us = z[A, s2-' + Bz2sz-4 + C$-4] sin (mq5 + w t ) ,  

U@ = z[A@sl-2+BZ2Sl-4 + Csl-41 cos (m$+wt),  

+B, ~ ~ 8 ~ - ~  + s ' - ~ ]  sin (mq5 + w t ) ,  u = - - [ A  sZ-1 
1 
w z  

where 
(21- 1) ( 2 1 + Z ~ - ~ - 6 )  (21-1)(21+Z0-3w-2) 

8(2 - 1 )  A ,  = > A,= 8(2-1) 7 

(21- 1) w2 

4 .  
(21- 1) (4-u2) B = -  A, = 

8(2--2) ' 

It is straightforward to show that the same expression (17)  for the radial dependence 
can be obtained for the subclass of 1 - m = 3, provided that the wavenumber satisfies 
rn % 2.  The latitudinal dependence, however, is somewhat more complicated, and is 
described by 

au 
ae cos 2 0 2  = 2mu+[(l+0(6)) cos2 0 - 6  sin2 0)l-m sinm+' 8 C O S ~  8, 

where the second term on the right-hand side is associated with the secondary effects 
of the @dependence (similar to the term 20, in (18)). If this term is neglected, we 
again readily show that the leading order leads to 

u , ( ~ )  = ~(8,) e-m(+Q* 

where ec = +IT tan-l(I/m):. 

In the first approximation, the amplitude of u4 again decreases exponentially, 
radially from the outer spherical surface and latitudinally from the peak, regardless 
of the sign and size of the frequency. The dependence of u, on 0 for different 
frequencies a t  the outer spherical surface is shown in figure 4 for m = 3 and 20. 
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FIQURE 4. Normalized azimuthal velocity u+ at the outer spherical surface as a function of 0 for 
the azimuthal wavenumbers m = 3 and 20 (Z-m = 3). The frequencies are (following the arrow) 
w = 1.3402, -0.7181, 0.3779 for m = 3 and w = 0.6015, -0.4303, 0.08959 for m = 20. 

FIQURE 5. Contours of u, (on the left-hand side) and u, (on the right-hand side) in a meridional 
plane for (a)  o = 0.9832, ( b )  w = 0.2148 and (c )  w = -0.5980 with m = 7, Z-m, = 3. 

FIGURE 6. Contours of u$ in a meridional plane from the Greenspan equation at r , / ro  = 0.4 and 
m = 2. The w- solution is on the left-hand side, and the o+ solution on the right-hand side. 

Displayed in figure 5 are typical structures for three equatorially antisymmetric 
boundary waves a t  m = 7 with w = 0.9832,0.2148 and -0.5980. Though the detailed 
structured of the solutions is quite different, the character of the equatorial trapping 
is essentially the same, particularly when the azimuthal wavenumber is large. It is 
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not surprising that u, in figure 4 displays a profile similar to that of u4 for the case 
2 --m = 2 in figures 1 and 2 because of the similar forms and same symmetries of (29) 
and (14). 

5. The Greenspan equation in spherical shells 
Ignoring the mathematical uncertainties of the problem, the solutions of ( 5 )  and 

(6) appear to be sound, and are unaffected by the presence of an inner sphere if the 
scale of the wave is sufficiently small. One way, however, to gain a better 
understanding of the problem, and particularly of the effects of an inner core on the 
large-scale waves, is to solve a mathematically well-defined but closely related 
problem in rotating spherical shells. An obvious choice is to take into account the 
effects of finite viscosity v + 0, described by the Greenspan equation (Greenspan 
1969) 

where E is the Ekman number here defined as E = v/Q(r , - rJ2 ,  and the 
characteristic lengthscale is the thickness of a spherical shell. Stress-free boundary 
conditions are assumed owing largely to the numerical difficulties of treating rigid 
boundary conditions. A comparison between ( 5 )  in a sphere and (30) in spherical 
shells can be achieved in the limit of small Ekman numbers. A simple velocity 
boundary condition in terms of the pressure P like (6), however, cannot be obtained 
for the stress-free boundary. We therefore expand the velocity u as a sum of poloidal 
and toroidal vectors 

u = V x V x rv+V x rw. 

Making use of this expression, two independent governing scalar equations, 
equivalent to (30), can be derived (see, for example, Zhang 1992a), 

m2-- Yi-2- v=v+23w = 0, " 3 :$I 
[(Ev-;)Y+2$]w-22v = 0. 

The differential operators, 9 and 2, are defined as 

Equations (31) and (32) are solved subject to the following conditions at  the inner 
and outer bounding spherical surfaces : 

The method for solving the above equations is the Galerkin spectral method, similar 
to that described by Zhang (1992a). 

In contrast to the inviscid case, the problem defined by (31)-(33) is a well-defined 
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m,l  7 = 0 ,  E = 0 7 = 0.2 T,I = 0.4, E = 7 = 0.6, E = 

2 , 4  
2 , 4  
7,  9 
7,  9 
2, 3 
7,  8 
7 ,  10 
7 , l O  
7, 10 

- i0.23 19 
+i1.2319 
-i0.2598 
+i0.7043 
+ i0.6667 
+ i0.2500 
-i0.5980 
+ i0.2148 
+i0.9832 

-0.23136-i0.2305, E = 
-0.3369e+i1.2316, E = 
-0.11906-i0.2597, E = 
-0.1237e+i0.7042, E = 
-0.0444s+i0.6667, E = 
-0.0666e+i0.2500, E = 
-0.17676-i0.5978, E = 
-0.27036+30.2149, E = 
-0.1872~+i0.9830, E = 

- 0.32086 - i0.2 124 
-0.88266 + i 1.6153 
-0.66856- i0.2595 
- 0.69096 + iO.704 1 
- 0.02486 + i0.6667 
- 0.34096 + i0.2498 
-0.9935~- i0.5976 
-1.0026e+i0.2126 
- 1.0357~+ i0.9828 

-0.2868~- i0.1631 
- 0.34646 + i 1.5579 
-0.4253~- i0.2567 
-0.5253s+ i0.6986 
-0.0106e+ i0.6667 
-0.1564~+ i0.2499 
-0.5591~- i0.5979 
-0.51446+ i0.2138 
-0.6909~+ i0.9828 

TABLE 1. Eigenvalues at different values of y and E ,  where E = 

linear decay problem, where the decay rate, u, is dependent on the values of E and 
m, and is of the order of u = O(m2E) in the case of stress-free boundary conditions. 
In the limit of small E ,  the form and frequency of the decay mode in a spherical shell 
should approach those given by the solutions of the inertial wave in an inviscid full 
sphere if there are no internal discontinuities, if the waves are trapped in the 
equatorial waveguide tube and if the azimuthal wavenumber is sufficiently large. The 
numerical analysis then serves to confirm the impression of the properties of the 
equatorially trapped boundary waves gained from analytical solutions in a full 
sphere. 

For a given value of the azimuthal wavenumber, it is found that the modes with 
the simplest z-structure (corresponding to (9) with the smallest values of 1-m) 
always have the smallest decay rate. This behaviour is expected because of the 
decreasing viscous dissipation with simpler z-structure. Table 1 shows some typical 
examples of the results of (31)-(33) for different wavenumbers and symmetries. The 
analytical results of ( 5 )  (the case 7 = 0, E = 0) are also included for comparison. 
When (19) is well satisfied, all eigenfrequencies for an inviscid full sphere are 
recovered in spherical shells and, furthermore, the structure of the corresponding 
eigenvectors is nearly identical to that of a full sphere. The slight differences between 
a sphere and spherical shells in table 1 arise from the fact that the wave must satisfy 
the stress-free boundaries in addition to u, = 0, occurring mainly at  the outer 
spherical surface. When the condition (19) is not or only roughly satisfied (that is, the 
typical radial scale of the wave is larger than the thickness of the shell, for instance, 
m = 2 a t  7 = 0.4), the modifications in the wave structure and frequency are more 
noticeable, and could be substantial because the changes in both the inner and outer 
boundaries are necessary in order to satisfy the boundary conditions. Figure 6, which 
can be compared to figures 1 ( a )  and 2 ( a ) ,  illustrates how these changes are made. The 
effects of the inner core are much less important for the w- wave that has a nearly 
z-independent profile; in the case of the o+ wave, however, the big cell passing 
through the inner core in figure 2 (a) is split into small cells to satisfy the boundary 
conditions. 

6.  Concluding remarks 
The finding of the equatorially trapped boundary waves reported in this paper 

could be of great benefit to the understanding of many geophysical fluid phenomena 
ranging from hydrodynamic waves to magnetohydrodynamic oscillations. With a 
particular choice of a basic magnetic field, the problem of magnetohydrodynamic 
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oscillations is described by exactly the same equations (5) arid (6) except that the 
frequency is a function of the strength of the imposed magnetic field (Malkus 1967 ; 
Hide & Stewartson 1972), though the particular choice of the basic magnetic field 
phases out some important and physically interesting magnetic instabilities. On the 
basis of the analytical solutions discussed in this paper, analytical solutions of 
convection in rotating spherical systems can, for the first time, be obtained for small- 
Prandtl-number fluids (Zhang 1992 b ) .  Tn addition, the phenomenon of the equatorial 
trapped wave has been found and discussed extensively in the context of ocean and 
atmosphere tropic dynamics (e.g. Gill 1982). It is of importance, however, to note 
that while the conventional P-plane solutions discussed in 3 1 and those derived in $33 
and 4 both exhibit equatorial trapping, in reality they are solutions to different 
physical problems as clearly indicated by the dependence of their latitudinal scales. 

Recent identifications of inertial waves in the Earth’s fluid core from super- 
conducting gravimetric data (Aldridge & Lumb 1987) created much new interest 
in this classical problem. There appears growing recognition by the geophysical 
community that inertial-wave observation may provide important direct in- 
formation about the physical and dynamical properties of the Earth’s interior 
(Aldridge & Lumb 1987; Smylie 1988; Crossley, Hinderer & Legros 1991). But on 
almost every major question, the difficulties encountered can be traced back to the 
fundamental mathematical uncertainties of the Poincard equation. One of them is 
the effect of an inner sphere on the solutions obtained from a full sphere, which is of 
primary importance with regard to geophysical applications because of the presence 
of the inner solid core of the Earth. The results of this paper indicate that the effect 
of an inner sphere is likely to be small with azimuthal wavenumber m > 3. 

There was scant evidence of the existence of discontinuities across the 
characteristic surface for the cases studied in this paper. However, it is not clear 
whether the singularities found by Stewartson & Rickard (1970) by studying the 
perturbations of the solutions of Longuet-Higgins (1964) can be attributed to the 
fact that the limits of small wavenumber (m = 1) and thin shell is assumed in their 
analysis. It appears that the singularities discussed by Stewartson & Rickard (1970) 
are at least insignificant in the solutions of the inertial wave that attempt to satisfy 
the Taylor-Proudman condition (the simple z-structure), and are trapped in the 
equatorial waveguide tube in a thick rotating spherical shell like the fluid core of the 
Earth. 

This work is supported by the SERC and, while I was at Leeds University, 
partially supported by the Leverhulme Trust. 
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